Informácie

Hľadanie

Ohmov zákonOhmov zákon

Ako vieme, štruktúru kovu tvoria kladné ióny v uzloch kryštalickej mriežky. Medzi nimi sa pohybujú voľné elektróny. Tieto elektróny sa zrážajú s iónmi mriežky a so sebou navzájom. Ak nie je prítomné elektrické pole, pohyb elektrónov je chaotický. Elektróny v kove sa správajú podobne ako častice plynu, a preto tiež hovoríme o elektrónovom plyne v kove. Klasická elektrónová teória považuje elektróny za častice, ktoré medzi sebou nepôsobia a pohyb ktorých môžeme opísať zákonmi klasickej mechaniky. Odvodenie vzťahu pre konduktivitu kovov na základe predstáv klasickej elektrónovej teórie požaduje, aby voľná dráha a stredná rýchlosť elektrónov neboli závislé od intenzity elektrického poľa. Ukazuje sa, že tento predpoklad sa spĺňa pre mnohé polovodiče aj väčšinu kovov (napr. pre Cu). Výpočty konduktivít a ich dobrá zhoda s experimentom potvrdili použiteľnosť klasickej teórie. Presné výpočty je však možné urobiť len pomocou kvantovej teórie.

Podľa kinetickej teórie ideálneho plynu kinetická energia tepelného pohybu jedného elektrónu môže byť napísaná ako

kde na ľavej strane rovnice vystupuje rýchlosť tepelného pohybu elektrónu. Po dosadení číselných hodnôt vychádza

Napríklad pre T = 273 K je stredná rýchlosť 110 km/s. Keďže smery pohybu jednotlivých elektrónov sú náhodilé, bude súčet vektorov ich rýchlostí rovný nule.

Pre porovnanie vypočítame rýchlosť elektrónov, ktorú nadobudnú pôsobením elektrického poľa. Použijeme vzťah (9.1.2) pre prúdovú hustotu: j = env. Z elektrotechnickej praxe vieme, že maximálny prúd v medenom vodiči s prierezom 1 mm2 môže byť za bežných podmienok 11 A, čo znamená prúdovú hustotu 1,1 kA/cm2. Koncentrácia voľných elektrónov v medi (ak predpokladáme, že jeden atóm Cu odovzdal 1 elektrón elektrónovému plynu) bude 8,45.1022 1/cm3 . Potom

Vidíme, že rýchlosť usporiadaného pohybu elektrónov v smere elektrického poľa je oveľa menšia ako rýchlosť tepelného pohybu.

Vezmime si jeden elektrón a sledujme, ako bude na neho pôsobiť elektrické pole. Bude pôsobiť silou

F = ma = eE ,

ktorá je konštantná, a teda pohyb elektrónu bude rovnomerne zrýchlený. Rýchlosť, ktorú elektrón takto získa, sa vektorovo pripočíta k rýchlosti tepelného pohybu. Získaný prírastok kinetickej energie (od práce elektrického poľa) sa pri zrážke odovzdá v konečnom dôsledku mriežke, čím sa zvyšuje teplota kovu. Takže môžeme predpokladať, že pri zrážke zanikne zložka rýchlosti nadobudnutá pôsobením elektrickej sily. Elektrón po nasledujúcu zrážku získa rýchlosť vmax. Stredná rýchlosť (od elektrickej sily) medzi dvomi zrážkami je

kde a je zrýchlenie elektrónu a t je čas potrebný na prekonanie vzdialenosti medzi dvomi zrážkami, t.j. voľnej dráhy l. Táto vzdialenosť sa prebehne rýchlosťou tepelného pohybu (lebo v0 je oveľa menšia ako stredná rýchlosť tepelného pohybu), preto čas t je daný pomerom voľnej dráhy a strednej rýchlosti.

Prúdová hustota bude

Veličina násobiaca intenzitu elektrického poľa sa nazýva merná (alebo špecifická) elektrická vodivosť s. Vzťah

j = s E

je totožný so vzťahom (9.1.7), je to Ohmov zákon v diferenciálnom tvare.

Príklad 9.3.1: Vezmime si vodič (napr. drôt), ktorý má prierez S a medzi nejakými dvomi bodmi vodiča vzdialenými od seba o dĺžku l je rozdiel potenciálov U = j1 - j2. Odvoďte Ohmov zákon pre tento vodič.

Riešenie  Intenzita elektrického poľa v tomto úseku vodiča je E = U/l. Intenzita elektrického prúdu bude

,

čo je Ohmov zákon v integrálnom tvare. Veličina R je odpor vodiča medzi bodmi 1 a 2.

 

Kontrolné otázky

  1. Ako vypočítame počet atómov medi v 1 cm3 ? Aké východiskové údaje k tomu potrebujeme?
  2. Máme rezistor v tvare valčeka známych rozmerov, ampérmeter, voltmeter a zdroj napätia. Ako zapojíte prístroje, aby ste mohli odmerať odpor rezistora a čo treba potom urobiť, aby ste určili jeho rezistivitu?